What is the expected momentum value for a real wavefunction?

_superluminal
Messages
3
Reaction score
0

Homework Statement


Show that a real valued wavefunction ##\psi(x)## must have ##\langle \hat{p}\rangle = 0##: Show that if we modify such a wavefunction
by multiplying it by a position dependent phase ##e^{iax}## then ##\langle \hat{p}\rangle = a##

Homework Equations


##\hat{p} = -i \hbar \frac{\partial}{\partial x}##

The Attempt at a Solution


The problem is to work out that the expected value is 0, but it is easy to do with that fact in mind. You can say that the imaginary part must equal 0 and so the LHS must also equal 0.

However, if I try to work it through I get:

##\langle \hat{p}\rangle = -i\hbar \int_{-\infty}^{\infty} \psi(x) \frac{\partial \psi(x)}{\partial x} \mathrm{d}x##

Even if I convert the partial derivative into a complete derivative I still don't know how to proceed. Does anyone have any better ideas? Any help would be much appreciated.
 
Physics news on Phys.org
I've solved it myself!

Here's how:

##\langle \hat{p}\rangle = -i\hbar \int_{-\infty}^{\infty} \psi(x) \frac{\partial \psi(x)}{\partial x} \mathrm{d}x##

##\implies \langle \hat{p}\rangle = -i\hbar \int_{-\infty}^{\infty} \psi(x) \frac{\mathrm{d} \psi(x)}{\mathrm{d} x} \mathrm{d}x##

Because ##\psi## is only a function of ##x##.

##\implies \langle \hat{p}\rangle = -i\hbar \int_{0}^{0} \psi(x) \mathrm{d} \psi(x)##

This works because ##\psi(\infty) = \psi(-\infty) = 0##
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top