What Is the Final Temperature After Dropping Hot Coins into Cooler Water?

  • Thread starter Thread starter jcwhitts
  • Start date Start date
  • Tags Tags
    Thermodynamics
AI Thread Summary
The discussion focuses on a physics problem involving the final temperature of coins after being dropped into cooler water. The student calculates the heat transfer using the formula Q=mc(deltaT) for both the coins and the water, noting that the heat lost by the coins equals the heat gained by the water in an insulated system. There is confusion regarding whether to use the same variable for final temperature in both equations, with suggestions to clarify this to avoid errors. The importance of correctly accounting for heat loss and gain, including sign changes, is emphasized to solve for the final temperature. Ultimately, the final temperature will be lower than 100 degrees Celsius due to heat transfer dynamics.
jcwhitts
Messages
9
Reaction score
0

Homework Statement



In a physics lab experiment a student immersed 191 one-cent coins (each having a mass of 3.00 g) in boiling water, at a temperature of 100 degrees C. After they reached thermal equilibrium, she fished them out and dropped them into an amount of water of mass 0.275 kg at a temperature of 17.0 degrees C in an insulated container of negligible mass.

What was the final temperature of the coins? (One-cent coins are made of a metal alloy - mostly zinc - with a specific heat capacity of 390 J/(kg * K).)

Use 4190 J/(kg* K) for the heat capacity of the water.

Homework Equations



Q=mc(deltaT)

Q1 + Q2=0



The Attempt at a Solution



I'm not sure where you can get a workable system of equations from this problem. I tried finding the Q of the coins, which I found to be Q=(191*.003kg)(390)(T-100) where T=the final temperature of the coins. And the Q of Water: Q=(.275)(4190)(T-17).

You also know that the Q of water and the Q of the coins must be equal to 0 because they are in an insulated container.

Because the water is heated and the coins are cooled, you know that the Q for water is positive and that Qwater=Qcoins, However, they have different final temperatures and I'm not sure how to find one in terms of the other so I can solve the equation I've come up with. Please help!
 
Physics news on Phys.org
I don't know if you did it on purpose or by accident, but you used the same letter T in both equations. Is it really the same? If not, use a different letter. But if you can argue they are, you can set Qwater = Qcoins which gives you: 191*0.003*390*(T - 100) = 0.275*4190*(T - 100) and solve for T (one equation, one unknown).
 
You can't assume the final temperatures are the same, sorry. So Qcoins=Qwater but
(191*.003)(390)(R-100)=.275(4190)(T-17)
 
I guess you can assume the final temperatures are equal. I think it was a problem with my signs in that I overcompensated for the fact that the coins lose heat, so they have a negative value for Q. The final temperature will obviously be less than 100 so I suppose that accounts for the sign change.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top