What is the Integral of (1+e^x)/(1-e^x)?

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Integral
nameVoid
Messages
238
Reaction score
0
<br /> \int \frac{1+e^x}{1-e^x}dx<br />
<br /> \int \frac{dx}{1-e^x} +\int \frac{e^x}{1-e^x}dx<br />
<br /> u=e^x <br />
<br /> lnu=x<br />
<br /> \frac{du}{u}=dx<br />
<br /> \int \frac{du}{u(1-u)}+\int \frac{du}{1-u}<br />
<br /> \int \frac{A}{u}+\frac{B}{1-u}du -ln|1-u|+C<br />
<br /> ln|e^x|+ln|1-e^x|-ln|1-e^x|+C<br />
<br /> x+C<br />
 
Physics news on Phys.org
nameVoid said:
<br /> \int \frac{1+e^x}{1-e^x}dx<br />
<br /> \int \frac{dx}{1-e^x} +\int \frac{e^x}{1-e^x}dx<br />
<br /> u=e^x <br />
<br /> lnu=x<br />
<br /> \frac{du}{u}=dx<br />
<br /> \int \frac{du}{u(1-u)}+\int \frac{du}{1-u}<br />
<br /> \int \frac{A}{u}+\frac{B}{1-u}du -ln|1-u|+C<br />
<br /> ln|e^x|+ln|1-e^x|-ln|1-e^x|+C<br />
<br /> x+C<br />
Your antiderivative is obviously incorrect, since d/dx(x + C) = 1. Your antiderivative would have been correct if its derivative was (1 + e^x)/(1 - e^x).

It might be easier not to split into two integrals, but using the same substitution. If you do that, you'll get something you can use partial decomposition on.
 
<br /> x-2ln|1-e^x|+C<br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top