What is the integral of sqrt(x^2-1)/x dx?

  • Thread starter Thread starter funzone36
  • Start date Start date
  • Tags Tags
    Dx Integral
funzone36
Messages
6
Reaction score
1

Homework Statement



What is the integral of sqrt(x^2-1)/x dx?

Homework Equations





The Attempt at a Solution



∫ √(x^2 - 1) dx / x

let x = sec u: u = sec^-1(x) and tan u = √(x^2 - 1)

dx = sec u tan u du

now the integral becomes

∫ √sec^2(u) - 1) sec u tan u du / sec u

= ∫ tan u tan u du

= ∫ tan^2(u) du

= ∫ (sec^2(u) - 1) du

= ∫ (sec^2(u) du - ∫ du

= tan u - u + c

back substitute u = sec^-1(x) and tan u = √(x^2 - 1)

= √(x^2 - 1) - sec^-1(x) + c

However, the correct answer should be arccot(sqrt(x^2-1))+sqrt(x^2-1) + c. Can someone help me find what went wrong?
 
  • Like
Likes knownothing
Physics news on Phys.org
Maple says that this integral is
sqrt(x^2-1)+arctan(1/(x^2-1))+c
 
Well, arctan(1/(x^2-1)) is the same as arccot(sqrt(x^2-1)). I just don't know the mistake I did when showing my steps.
 
funzone36, what you initially had was more or less correct. you can check by writing sec^-1(x) as arccos(1/x) and then differentiating.

The answer that you said was supposedly correct involving arccot is gotten by substituting x = csc(u) and turns out to be a slightly neater approach.
 
arcsec(x)=arctan(sqrt(x^2-1)). Draw a right triangle with hypotenuse x and leg 1. t=arcsec(x) is the angle between those two. What's tan(t)?
 
Thanks everywhere. My steps were actually correct. I learned that I should draw diagrams next time I do these problems.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top