photonsquared
- 15
- 0
1. Find v(t) if V(s)=\frac{2s}{(s^{2}+4)^{2}}
Ans: v(t)=\frac{1}{2}tsin2tu(t)
2. Homework Equations :
V(s)=\frac{a_{n}}{(s-p)^{n}}+\frac{a_{n-1}}{(s-p)^{n-1}}+\cdots+\frac{a_{1}}{(s-p)}
a_{n-k}=\frac{1}{k!}\frac{d^{k}}{ds^{k}}[(s-p)^{n}V(s)]_{s=p}
3. Attempt at a solution:
V(s)=\frac{2s}{(s^{2}+4)^{2}}
V(s)=\frac{2s}{(s^{2}+4)^{2}}=\frac{A}{(s^{2}+4)^{2}}+\frac{B}{(s^{2}+4)}
A=\left[2s-B(s^{2}+4)\right]_{s=2i}
A=4i
B=\frac{d}{ds}\left[2s-B(s^{2}+4)\right]_{s=2i}
B=2
V(s)=\frac{4i}{(s^{2}+4)^{2}}+\frac{2}{(s^{2}+4)}
I am not sure what to do with the imaginary term, but it does not translate to 1/2t, which is what is required for the answer.
?+sin2tu(t)
Ans: v(t)=\frac{1}{2}tsin2tu(t)
2. Homework Equations :
V(s)=\frac{a_{n}}{(s-p)^{n}}+\frac{a_{n-1}}{(s-p)^{n-1}}+\cdots+\frac{a_{1}}{(s-p)}
a_{n-k}=\frac{1}{k!}\frac{d^{k}}{ds^{k}}[(s-p)^{n}V(s)]_{s=p}
3. Attempt at a solution:
V(s)=\frac{2s}{(s^{2}+4)^{2}}
V(s)=\frac{2s}{(s^{2}+4)^{2}}=\frac{A}{(s^{2}+4)^{2}}+\frac{B}{(s^{2}+4)}
A=\left[2s-B(s^{2}+4)\right]_{s=2i}
A=4i
B=\frac{d}{ds}\left[2s-B(s^{2}+4)\right]_{s=2i}
B=2
V(s)=\frac{4i}{(s^{2}+4)^{2}}+\frac{2}{(s^{2}+4)}
I am not sure what to do with the imaginary term, but it does not translate to 1/2t, which is what is required for the answer.
?+sin2tu(t)