What is the Inverse Laplace Transform for V(s)=\frac{2s}{(s^{2}+4)^{2}}?

photonsquared
Messages
15
Reaction score
0
1. Find v(t) if V(s)=\frac{2s}{(s^{2}+4)^{2}}

Ans: v(t)=\frac{1}{2}tsin2tu(t)

2. Homework Equations :

V(s)=\frac{a_{n}}{(s-p)^{n}}+\frac{a_{n-1}}{(s-p)^{n-1}}+\cdots+\frac{a_{1}}{(s-p)}
a_{n-k}=\frac{1}{k!}\frac{d^{k}}{ds^{k}}[(s-p)^{n}V(s)]_{s=p}

3. Attempt at a solution:

V(s)=\frac{2s}{(s^{2}+4)^{2}}

V(s)=\frac{2s}{(s^{2}+4)^{2}}=\frac{A}{(s^{2}+4)^{2}}+\frac{B}{(s^{2}+4)}

A=\left[2s-B(s^{2}+4)\right]_{s=2i}

A=4i

B=\frac{d}{ds}\left[2s-B(s^{2}+4)\right]_{s=2i}

B=2

V(s)=\frac{4i}{(s^{2}+4)^{2}}+\frac{2}{(s^{2}+4)}

I am not sure what to do with the imaginary term, but it does not translate to 1/2t, which is what is required for the answer.

?+sin2tu(t)






 
Physics news on Phys.org
photonsquared said:
1. Find v(t) if V(s)=\frac{2s}{(s^{2}+4)^{2}}

Ans: v(t)=\frac{1}{2}tsin2tu(t)

2. Homework Equations :

V(s)=\frac{a_{n}}{(s-p)^{n}}+\frac{a_{n-1}}{(s-p)^{n-1}}+\cdots+\frac{a_{1}}{(s-p)}
a_{n-k}=\frac{1}{k!}\frac{d^{k}}{ds^{k}}[(s-p)^{n}V(s)]_{s=p}

3. Attempt at a solution:

V(s)=\frac{2s}{(s^{2}+4)^{2}}

V(s)=\frac{2s}{(s^{2}+4)^{2}}=\frac{A}{(s^{2}+4)^{2}}+\frac{B}{(s^{2}+4)}
No. Since the denominator, s^2+ 4 is quadratic you need
\frac{2s}{(s^2+4)^2}= \frac{Ax+ B}{(x^2+4)^2}+ \frac{Cx+ D}{x^2+4}
 
Thanks, I'll attempt again.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top