What is the lagrangian of a free relativistic particle?

Lior Fa
Messages
4
Reaction score
0

Homework Statement


What is the lagrangian of a free reletavistic particle in a electro-magnetic field?
And what are the v(t) equations that come from the Euler-Lagrange equations (given A(x) = B0/2 crosProduct x)
(B/2 is at z direction)

Homework Equations

The Attempt at a Solution


I've got to: L = mc^2*sqrt(1-(v/c)^2)+q*(A*v-φ)

But don't get to the velocity equations
 
Physics news on Phys.org
The problem is quite confusing a particle cannot be free if it is in an electromagnetic field because every conceivable particle has electromagnetic attributes.
Kinetic energy, T = m*[1 - {1/(1-(v²/c²))}]*c², where m is rest mass.
 
For a free relativistic massive particle ,lagrangian would be ##m\int ds## where ds is the proper time and m is the rest mass..So it is invariant under lorentz transformation. ##ds=\sqrt{\eta_{\mu \nu}dx^{\mu}dx^{\nu}}## So if I parametrize the whole thing with parameter ##\tau## then we have ##ds=\sqrt{\eta_{\mu \nu}\frac{dx^{\mu}}{d\tau}\frac{dx^{\nu}}{d\tau}}d\tau## Then we can write $$L=m\int d\tau \sqrt{(\frac{dt}{d\tau})^{2}-(\frac{dx}{d\tau})^{2}}$$ where I have taken mostly negative sign convention...
I think This should be the case with free particle...
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top