So here is were I'm at now
L = 12 ∫^{\frac{∏}{2}}_{0} \frac{1}{1+cos(θ)}\sqrt{1+(\frac{sin(θ)}{1+cos(θ)})^{2}}dθ
from here I used the fact that
1 + cos(θ) = 2cos^{2}(\frac{θ}{2})
so
\frac{sec^{2}(\frac{θ}{2})}{2} = \frac{1}{1+cos(θ)}
similarly
\sqrt{1+(\frac{sin(θ)}{1+cos(θ)})^{2}} = \sqrt{1+\frac{sec^{4}(\frac{θ}{2})sin^{2}(θ)}{4}}
So I know have the following
L = 12 ∫^{\frac{∏}{2}}_{0} \frac{1}{1+cos(θ)}\sqrt{1+(\frac{sin(θ)}{1+cos(θ)})^{2}}dθ = 12 ∫^{\frac{∏}{2}}_{0} \frac{sec^{2}(\frac{θ}{2})}{2} \sqrt{1+\frac{sec^{4}(\frac{θ}{2})sin^{2}(θ)}{4}}dθ
from here I use the fact that
sin^{2}(θ)=4sin^{2}(\frac{θ}{2})cos^{2}(\frac{θ}{2})
wolfram alpha confirm it's true
http://www.wolframalpha.com/input/?i=sin(x)^2=4sin(x/2)^2*cos(x/2)^2
plugging this in I get
12 ∫^{\frac{∏}{2}}_{0} \frac{sec^{2}(\frac{θ}{2})}{2} \sqrt{1+sec^{4}(\frac{θ}{2})sin^{2}(\frac{θ}{2})cos^{2}(\frac{θ}{2})}dθ=6 ∫^{\frac{∏}{2}}_{0} sec^{2}(\frac{θ}{2})\sqrt{1+sec^{2}(\frac{θ}{2})sin^{2}(\frac{θ}{2})}dθ, u = \frac{θ}{2}, \frac{du}{dθ}=\frac{1}{2},du=\frac{dθ}{2},dθ=2du,L=12 ∫^{θ=\frac{∏}{2}}_{θ=0} sec^{2}(u)\sqrt{1+sec^{2}(u)sin^{2}(u)}du=12 ∫^{θ=\frac{∏}{2}}_{θ=0} sec^{2}(u)\sqrt{1+tan^{2}(u)}du
then from here I use
sin^{2}(θ))+cos^{2}(θ)=1
that if I divide through by cos^{2}(θ) I get
tan^{2}(θ))+1=sec^{2}(θ)
L=12 ∫^{θ=\frac{∏}{2}}_{θ=0} sec^{2}(u)\sqrt{sec^{2}(u)}du=12∫^{θ=\frac{∏}{2}}_{θ=0} sec^{3}(u)du
then because
∫sec^{n}(x)dx = \frac{sec^{n-2}(x)tan(x)}{n-1}+\frac{n-2}{n-1}∫sec^{n-2}(x)dx
we got
12∫^{θ=\frac{∏}{2}}_{θ=0} sec^{3}(u)du=12[\frac{sec(u)tan(u)}{2}+\frac{1}{2}∫sec(u)du]|^{θ=\frac{∏}{2}}_{θ=0}
and because
∫sec(x)dx=ln|sec(x)+tan(x)|+c
we got
12[\frac{sec(u)tan(u)}{2}+\frac{1}{2}∫sec(u)du]|^{θ=\frac{∏}{2}}_{θ=0}=12[\frac{sec(u)tan(u)}{2}+\frac{1}{2}ln(|sec(u)+tan(u)|)]|^{θ=\frac{∏}{2}}_{θ=0}
plugging back in
u = \frac{θ}{2}
we got
12[\frac{sec(u)tan(u)}{2}+\frac{1}{2}ln(|sec(u)+tan(u)|)]|^{θ=\frac{∏}{2}}_{θ=0}=12[\frac{sec(\frac{θ}{2})tan(\frac{θ}{2})+ln|sec(θ/2)+tan(\frac{θ}{2})|}{2}]|^{θ=\frac{∏}{2}}_{θ=0}=12[\frac{sec(\frac{∏}{4})tan(\frac{∏}{4})+ln(|sec(∏/4)+tan(\frac{∏}{4})|)}{2}-\frac{sec(0)tan(0)+ln(|sec(0)+tan(0)|}{2})=12[\frac{\sqrt{2}+ln(|\sqrt{2}+1|)}{2}-0]=6(\sqrt{2}+ln(\sqrt{2}+1))