yungman
- 5,741
- 294
Find the maximum ##\theta## of
\left[\frac{\cos\left(\frac{kl}{2}\cos\theta\right)-\cos\left(\frac {kl}{2}\right)}{\sin\theta}\right]^2
So I need to find the maximum of
F(\theta)=\frac{\cos\left(\frac{kl}{2}\cos\theta\right)-\cos\left(\frac {kl}{2}\right)}{\sin\theta}
First I differentiate respect to ##\theta## and equate to 0
dF(\theta)=\frac{(\sin\theta)\left(-\sin\left(\frac{kl}{2}\right)\cos\theta\right)\left(-\frac{kl}{2}\sin\theta\right)-\left[\cos\left(\frac{kl}{2}\cos\theta\right)-\cos\left(\frac{kl}{2}\right)\right](-\cos\theta)}{\sin^2\theta}=0
So
\Rightarrow\;(\sin\theta)\left(-\sin\left(\frac{kl}{2}\right)\cos\theta\right)\left(-\frac{kl}{2}\sin\theta\right)-\left[\cos\left(\frac{kl}{2}\cos\theta\right)-\cos\left(\frac{kl}{2}\right)\right](-\cos\theta)=0
This is no easier to solve compare to the original equation before differentiation. I tried letting ##u=\frac{kl}{2}\cos\theta\Rightarrow\;du=-\frac{kl}{2}\sin\theta d\theta##. But still it is going nowhere. Please help.
\left[\frac{\cos\left(\frac{kl}{2}\cos\theta\right)-\cos\left(\frac {kl}{2}\right)}{\sin\theta}\right]^2
So I need to find the maximum of
F(\theta)=\frac{\cos\left(\frac{kl}{2}\cos\theta\right)-\cos\left(\frac {kl}{2}\right)}{\sin\theta}
First I differentiate respect to ##\theta## and equate to 0
dF(\theta)=\frac{(\sin\theta)\left(-\sin\left(\frac{kl}{2}\right)\cos\theta\right)\left(-\frac{kl}{2}\sin\theta\right)-\left[\cos\left(\frac{kl}{2}\cos\theta\right)-\cos\left(\frac{kl}{2}\right)\right](-\cos\theta)}{\sin^2\theta}=0
So
\Rightarrow\;(\sin\theta)\left(-\sin\left(\frac{kl}{2}\right)\cos\theta\right)\left(-\frac{kl}{2}\sin\theta\right)-\left[\cos\left(\frac{kl}{2}\cos\theta\right)-\cos\left(\frac{kl}{2}\right)\right](-\cos\theta)=0
This is no easier to solve compare to the original equation before differentiation. I tried letting ##u=\frac{kl}{2}\cos\theta\Rightarrow\;du=-\frac{kl}{2}\sin\theta d\theta##. But still it is going nowhere. Please help.