What is the Mean Number of Oscillatory Quanta After a Hamiltonian Change?

upender singh
Messages
14
Reaction score
0
A quantum mechanical oscillator with the Hamiltonian
H1=p^2/2m +(m(w1)^2 x^2)/2

is initially prepared in its ground state (zero number of oscillatory quanta). Then the
Hamiltonian changes abruptly (almost instantly):
H1→H2=p^2/2m +(m(w2)^2 x^2)/2
What is the mean number of oscillatory quanta upon the transformation?My first question is what does oscillatory quanta exactly means?

Attempt: Theory of quantum harmonic oscillator, the eigenstate formulas, the energy formulas. The only thing that is zero in ground state is n=0, so does it mean oscillatory quanta implies n quantum number.
 
Physics news on Phys.org
You should have posted this in the homework forum, as you'll get a better response.

Let me explain the question at least. The oscillator is in a known state (ground state for first Hamiltonian). The Hamiltonian changes, which means that the energy eigenstates change. Now you have effectively an initial value problem. You know the initial state/wave function, and this you need to express as a linear combination of your new eigenstates.

I suspect the mean oscillatory quanta means the expected value of ##n## in your new system. Where ##n## represents the energy levels in your new system.
 
Hi Perok,
Sorry for posting it at wrong place.
Do you mean that the my initial state is the ground state of the old Hamiltonian. Now since the Hamiltonian has changed, I need to express it(ground state from old Hamiltonian) as a combination of the eigenstates of new Hamiltonian?
 
upender singh said:
Hi Perok,
Sorry for posting it at wrong place.
Do you mean that the my initial state is the ground state of the old Hamiltonian. Now since the Hamiltonian has changed, I need to express it(ground state from old Hamiltonian) as a combination of the eigenstates of new Hamiltonian?

Yes, that's what you have here.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top