By far the easiest way to see this is to use a spacetime diagram. Draw the world line of a laser dot with a velocity greater than c. If you know how a Lorentz transformation tilts the axes of the diagram, you will immediately see that a boost to another coordinate system can make the speed of the dot arbitrarily large, infinite, or negative in the new coordinate system.
Alternatively, we can use the velocity addition rule. I'm going to use units such that c=1. Suppose that the dot has velocity 1.5 relative to the ground, and that you're "running" at velocity 0.6 relative to the ground. We want to find the velocity of the dot in the inertial coordinate system that's comoving with you when you're running. In this coordinate system, the ground has velocity -0.6, so we need to plug -0.6 and 1.5 into the velocity addition formula:
$$\frac{-0.6+1.5}{1+(-0.6)\cdot 1.5}=\frac{0.9}{0.1}=9.$$ So if the dot moves at 1.5c relative to the ground, it moves at 9c relative to a runner who's running at 0.6c relative to the ground.