What Is the Name of u=(3, 3, 3) Vector?

  • Thread starter Thread starter DUET
  • Start date Start date
  • Tags Tags
    Column Vector
DUET
Messages
55
Reaction score
0
If u=(3, 3 , 3) is a vector in R3 then we can draw the vector in a three dimensional space.(3=x coordinate, 3= y coordinate, 3= z coordinate.)

if x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} is a column vector in Rm then how can we draw it?
In addition we call X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} column vector. My question is what is the name of u=(3, 3 , 3) vector?
 
Last edited:
Physics news on Phys.org
There is no single, general way to draw a vector of an n-dimensional space on paper if n>3. There might be some interesting methods for specific applications, but you always have to ignore some components, or use other tools like color codes or whatever.

Row vector.
 
I think u=(3, 3 , 3)T is a column vector, three dimensional. How can I draw it now?
 
Yes, it is obviously "three dimensional". Being a "column" vector as opposed to a "row" vector is irrelevant here. You draw such a vector, in two dimensions, by projecting the three dimensional vector onto the two dimensional surface. How you do that depends upon what kind of projection you want to use and, most importantly, from which direction you are looking at the vector.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top