Sorry I left out info, I was having a hard time writing the code, but here is the rest of the work (the problem tells me to work in spherical coordinates):
## \frac {- \hbar ^2} {2m} \, \Big[\frac {1} {r^2} \, \frac{∂}{∂r} \ \Big(r^2 \frac {∂}{∂r} \Big) \, + \frac {1} {r^2 \sinθ} \frac{∂}{∂θ} \, \Big( \sinθ \frac {∂} {∂θ} \Big) + \frac {1}{r^2 \sin^2θ} \, \frac {∂^2}{∂φ^2} \Big]ψ + \frac {1}{2} m \,ω^2 \, r^2ψ \ = Eψ##
Let ψ(r,θ,φ) = R(r)Θ(θ)Φ(φ)
##ΘΦ \Big[\frac {- \hbar ^2} {2m} \, \frac {1} {r^2} \, \frac{∂}{∂r} \ \Big(r^2 \frac {∂R}{∂r} \Big) + \frac {1} {2} m \, w^2 \, r^2 \, R \, \Big] + RΦ \Big[ \frac {- \hbar ^2} {2m} \, \frac {1} {r^2 \sinθ} \frac{∂}{∂θ} \, \Big( \sinθ \frac {∂Θ} {∂θ} \Big) \, + \frac {1} {2} m \, w^2 \, r^2 \, Θ \Big] + RΘ \, \Big[ \frac {- \hbar ^2} {2m} \, \frac {1}{r^2 \sin^2θ} \, \frac {∂^2Φ}{∂φ^2} \, + \frac {1} {2} m \, w^2 \, r^2 \, Φ\Big] = ERΘΦ##