What is the position operator in the momentum basis for a given momentum value?

  • Thread starter Thread starter novop
  • Start date Start date
  • Tags Tags
    Basis Operators
novop
Messages
124
Reaction score
0

Homework Statement



I need to prove that, <p'|\hat{x}p> = i\hbar\frac{d}{dp'}\delta{p-p'}

i.e. find the position operator in the momentum basis p for p'...

It's easy to prove that <x'|\hat{x}x> = <\hat{x}x'|x> = x'<x'|x> = x'\delta{x-x'}
(position operator in position basis for x')
since I can use the fact that the operator x is hermitian. But what about for the first problem? Any hints?
 
Last edited:
Physics news on Phys.org
<p'|X|p> = int_x dx <p'|X|x><x|p> = int_x dx x <p'|x> <x|p> = int_x dx x (1/√2πhbar) e-ixp/hbar <x|p> =-hbar/i int_x dx ∂/∂p' <p'|x> <x|p> = ihbar ∂/∂p' ... = what you need.
 
Great. Thanks so much.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top