What is the Poynting Vector for a Time-Dependent Electric Field in Vacuum?

shevchenko12
Messages
2
Reaction score
0
3 (a) ii) A time-dependent electric field in vacuum is given by
⃗E= E0(0, 0, sin(ky − ωt))
where E0 is a constant.
Derive an expression for the corresponding magnetic field ⃗B. [7]
Using curl E=-dB/dt
I end up with B=(E0/c)sin(ky-wt)
Show that both ⃗E and ⃗B are perpendicular to the wave vector ⃗k = (0, k, 0). [2]
Using the dot product i found that:
k.E=(0x0,0xk,0x ⃗E)=0
k.B=(0x ⃗E/c,0xk,0x0)=0
What is the Poynting vector for this wave? [4]

N=(ExB)/μ0μr

Then we get:

(1/μ0μr)((E0 2/c)sin(ky-wt)2,0,0)
Finally giving:
(-1/μ0.μr.c)(E02Sin(ky-wt)2)

I think the first two parts are right but have no idea if I am doing the right thing on the last part. I have used the cross product between E and B and got my final answer for part 3. Thanks for any help in advance!
 
Physics news on Phys.org
shevchenko12 said:
3 (a) ii) A time-dependent electric field in vacuum is given by
⃗E= E0(0, 0, sin(ky − ωt))
where E0 is a constant.
Derive an expression for the corresponding magnetic field ⃗B. [7]
Using curl E=-dB/dt
I end up with B=(E0/c)sin(ky-wt)
Show that both ⃗E and ⃗B are perpendicular to the wave vector ⃗k = (0, k, 0). [2]
Using the dot product i found that:
k.E=(0x0,0xk,0x ⃗E)=0
k.B=(0x ⃗E/c,0xk,0x0)=0
What is the Poynting vector for this wave? [4]

N=(ExB)/μ0μr

Then we get:

(1/μ0μr)((E0 2/c)sin(ky-wt)2,0,0)
Finally giving:
(-1/μ0.μr.c)(E02Sin(ky-wt)2)

I think the first two parts are right but have no idea if I am doing the right thing on the last part. I have used the cross product between E and B and got my final answer for part 3. Thanks for any help in advance!

Basically I see nothing wrong with what you did (except for possibly a sign error.)
But I'm not sure you took the dot-products right.
The E field has a z component so the B field has an x component & obviously each of these when dotted into the y direction of propagation gives zero. Is that what you wrote?
 
Erm, i think that's what i did. i knew that the dot products would give 0 as each one is along a different axis. Thanks for the reply btw, its good to know that I'm going along the right line.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top