SrEstroncio
- 60
- 0
Hello.
I have been reading a book with an introductory section on number theory and the part regarding Euler's function just said that \varphi (n) = n-1 when n is prime and that \varphi (n) = n(1-\frac{1}{p_{1}})(1-\frac{1}{p_{2}})...(1-\frac{1}{p_{n}}) when n is a composite number.
The book (What is mathematics by Richard Courant) said the proof was "completely trivial" but that they wouldn't say it and I was wondering if someone could provide a proof or guide me through one.
Thanks in advance.
I have been reading a book with an introductory section on number theory and the part regarding Euler's function just said that \varphi (n) = n-1 when n is prime and that \varphi (n) = n(1-\frac{1}{p_{1}})(1-\frac{1}{p_{2}})...(1-\frac{1}{p_{n}}) when n is a composite number.
The book (What is mathematics by Richard Courant) said the proof was "completely trivial" but that they wouldn't say it and I was wondering if someone could provide a proof or guide me through one.
Thanks in advance.
Last edited: