What Is the Ratio of the New Separation Distance to the Initial Separation?

AI Thread Summary
The discussion revolves around calculating the ratio of the new separation distance, r2, to the initial separation, r1, for two point charges with given magnitudes and forces. The initial force is 5.70 N, and after changing the separation, the force becomes 0.57 N. The participants derive that r2 is ten times r1, indicating that as the force decreases, the separation distance increases significantly. A key point of confusion was resolved regarding the algebraic manipulation of the equations, leading to the correct understanding that the ratio is indeed based on the inverse square relationship of force and distance. Ultimately, the calculations were confirmed to be correct after addressing a minor algebraic error.
WhiteWolf98
Messages
89
Reaction score
8

Homework Statement


The magnitude of the electrostatic force between point charges ##q_1 = 26~\mu C## and ##q_2 = 47~\mu C## is initially ##F_1=5.70~N##. The separation distance between the charges, ##r_1## is then changed such that the magnitude of the force is, ##F_2=0.57~N##.

(a) What is the ratio of the new separation distance, ##r_2## to the initial separation, ##r_1##?

(b) What is the new separation distance, ##r_2##?

Homework Equations


##F=K \cdot \frac {q_1 \cdot q_2} {r^2}##, where ##K \approx 8.99×10^9##

The Attempt at a Solution


##5.70=\frac {K|q_1||q_2|} {{r_1}^2}##

##r_1=\sqrt {\frac {K|q_1||q_2|} {5.70}}##

##0.57=\frac {K|q_1||q_2|} {{r_2}^2}##

##r_2=\sqrt {\frac {K|q_1||q_2|} {0.57}}##

What's even the point of the ratio when all elements are present in the formula...?

##\frac {r_2} {r_1}=\frac {\sqrt {\frac {K|q_1||q_2|} {0.57}}} {\sqrt {\frac {K|q_1||q_2|} {5.70}}}##

##\frac {r_2} {r_1}=\frac {(\sqrt {\frac {K|q_1||q_2|} {0.57}})^2} {(\sqrt {\frac {K|q_1||q_2|} {5.70}})^2}##

##\frac {r_2} {r_1}=\frac {\frac {K|q_1||q_2|} {0.57}} {\frac {K|q_1||q_2|} {5.70}}##

##\frac {r_2} {r_1}=\frac {5.70} {0.57}##

##r_2=10r_1##

Working them out individually:

##K\cdot(47×10^{-6})(26×10^{-6})=10.98~ (to~3~s.f.)\gg (B)##

##5.70=\frac {B} {{r_1}^2}##

##r_1= \sqrt {\frac {B} {5.70}}=1.39~m~(to~3~s.f.)##

##r_2= \sqrt {\frac {B} {0.57}}=4.39~m~(to~3~s.f.)##

I'd expect ##r_2## to be larger, since the force is smaller. But it doesn't agree with the ratio... Have I made a wrong assumption or calculation somewhere?
 
Physics news on Phys.org
WhiteWolf98 said:

Homework Statement


The magnitude of the electrostatic force between point charges ##q_1 = 26~\mu C## and ##q_2 = 47~\mu C## is initially ##F_1=5.70~N##. The separation distance between the charges, ##r_1## is then changed such that the magnitude of the force is, ##F_2=0.57~N##.

(a) What is the ratio of the new separation distance, ##r_2## to the initial separation, ##r_1##?

(b) What is the new separation distance, ##r_2##?

Homework Equations


##F=K \cdot \frac {q_1 \cdot q_2} {r^2}##, where ##K \approx 8.99×10^9##

The Attempt at a Solution


##5.70=\frac {K|q_1||q_2|} {{r_1}^2}##

##r_1=\sqrt {\frac {K|q_1||q_2|} {5.70}}##

##0.57=\frac {K|q_1||q_2|} {{r_2}^2}##

##r_2=\sqrt {\frac {K|q_1||q_2|} {0.57}}##

What's even the point of the ratio when all elements are present in the formula...?

##\frac {r_2} {r_1}=\frac {\sqrt {\frac {K|q_1||q_2|} {0.57}}} {\sqrt {\frac {K|q_1||q_2|} {5.70}}}##

>>
##\frac {r_2} {r_1}=\frac {(\sqrt {\frac {K|q_1||q_2|} {0.57}})^2} {(\sqrt {\frac {K|q_1||q_2|} {5.70}})^2}##

>>

The above step is an error. Did you forget to square the left hand side?

##\frac {r_2} {r_1}=\frac {\frac {K|q_1||q_2|} {0.57}} {\frac {K|q_1||q_2|} {5.70}}##

##\frac {r_2} {r_1}=\frac {5.70} {0.57}##

##r_2=10r_1##

Working them out individually:

##K\cdot(47×10^{-6})(26×10^{-6})=10.98~ (to~3~s.f.)\gg (B)##

##5.70=\frac {B} {{r_1}^2}##

##r_1= \sqrt {\frac {B} {5.70}}=1.39~m~(to~3~s.f.)##

##r_2= \sqrt {\frac {B} {0.57}}=4.39~m~(to~3~s.f.)##

I'd expect ##r_2## to be larger, since the force is smaller. But it doesn't agree with the ratio... Have I made a wrong assumption or calculation somewhere?

See above.
 
  • Like
Likes WhiteWolf98
Ah. I didn't forget, I didn't think you had to. Oops.

Would ##r_2=\sqrt 10 r_1## then?
 
WhiteWolf98 said:
Ah. I didn't forget, I didn't think you had to. Oops.

Would ##r_2=\sqrt 10 r_1## then?

Yes. It's an inverse square law. If the force reduces by a factor the distance increases by the square root of that factor.
 
  • Like
Likes WhiteWolf98
I see. But even using that formula, it doesn't give me the same ##r_2## value
 
WhiteWolf98 said:
I see. But even using that formula, it doesn't give me the same ##r_2## value
It's as close as can be expected after rounding the individual distances to three sig figs.
What are you getting for the ratio? What if you take an extra digit in the rounding?
 
  • Like
Likes WhiteWolf98
Okay, for some reason I did it again, and it worked... either way, not complaining. Thank you both. How silly for it all to be just an algebra mistake in the end
 
Back
Top