What is the Ratio of Thicknesses for a Beam Splitting on a Stationary Plate?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hello!

A two-dimensional beam of thickness S and velocity c (evenly distributed at the thickness) falls in stationary plate and get separated. Calculate the ratio of thicknesses S1/S2 as a function of the angle φ.

(see attachment)In my notes there is this solution:

Continuity equation:

Let c1, c2 the velocities of the sections 1, 2

$$0: \overrightarrow{u}=c\hat{e} \ \ , \ \ \overrightarrow{n}_0=-\hat{e}=-(-\sin \phi \hat{i}+\cos \phi \hat{j}) \Rightarrow \overrightarrow{u} \cdot \overrightarrow{n}_0=-c \\ 1: \overrightarrow{u}=c_1 \overrightarrow{n}_1=c_1 \hat{i} \ \ , \ \ \overrightarrow{n}_1=\hat{i} \Rightarrow \overrightarrow{u} \cdot \overrightarrow{n}_1=c_1 \\ 2: \overrightarrow{u}=c_2 \overrightarrow{n}_2=-c_2\hat{i} \ \ , \ \ \overrightarrow{n}_2=-\hat{i} \Rightarrow \overrightarrow{u} \cdot \overrightarrow{n}_2=c_2$$

$$\int_{\partial{W_1}}\overrightarrow{u} \cdot \overrightarrow{n}dA=0 \Rightarrow -c \cdot (S \cdot 1)+c_1 \cdot (S_1 \cdot 1)+c_2 \cdot (S_2 \cdot 1)=0 \Rightarrow cS=c_1S+c_2S_2 \ \ \ \ \ (1) $$

Conservation of energ $\Rightarrow $ Bernoulli equation

$$\frac{1}{2}|\overrightarrow{u}|^2+\frac{p}{\rho_0}=\text{ constant along a stremline }$$

$$0 \rightarrow 1 : \frac{1}{2}c^2+\frac{p_a}{\\rho_0}=\frac{1}{2}c_1^2+\frac{p_a}{\rho_0} \Rightarrow c_1=c \\ 0 \rightarrow 2 : \frac{1}{2}c^2+\frac{p_a}{\\rho_0}=\frac{1}{2}c_2^2+\frac{p_a}{\rho_0} \Rightarrow c_2=c \\ \Rightarrow c_1=c_2=c \ \ \ \ \ (2)$$

$$(1) \wedge (2) \Rightarrow S=S_1+S_2 \ \ \ \ \ (3)$$

$$\overrightarrow{F}_{W_0}=-\int_{\partial_{W_1}}p \overrightarrow{n} dA-\int_{\partial{W_1}}\rho \overrightarrow{u} (\overrightarrow{u} \cdot \overrightarrow{n})dA$$

$$\int_{\partial_{W_1}}p \overrightarrow{n} dA=p_a \int_{\partial{W_1}}\overrightarrow{n}dA=0$$

$$\int_{\partial{W_1}}\rho \overrightarrow{u} (\overrightarrow{u} \cdot \overrightarrow{n})dA=\rho_0 (c \hat{e}(-c)S+c_1 \hat{i}c_1S_1+(-c_2 \hat{i})c_2S_2)=(\rho_0c^2S\cos \phi +\rho_0 c_1^2S_1-\rho_0c_2^2S_2)\hat{i}-\rho c^2S\sin \phi \hat{j}=-\overrightarrow{F}_{W_0}$$

$$F_{W_0, x}=-\rho_0c^2(S\cos \phi +S_1-S_2) \ \ \ \ \ (4a) \\ F_{W_0, y}=\rho c^2 S \sin \phi \ \ \ \ \ (4b)$$

Since the fluid is ideal we have that $$F_{W_0, x}=0 \Rightarrow S_2-S_1=S \cos \phi \ \ \ \ \ (5)$$

$$(3) \wedge (5) \Rightarrow \\S_1=\frac{S}{2}(1+\cos \phi) \\ S_2=\frac{S}{2}(1-\cos \phi) \\ \Rightarrow \frac{S_2}{S_1}=\frac{1-\cos \phi}{1+\cos \phi}$$
Could you explain to me the general idea of the solution? I haven't really understood that...Every time when we have such an exercise do we have to use the continuity equation and the Bernoulli equation?

Also could you explain to me why the following equality stand?

$$\int_{\partial{W_1}}\rho \overrightarrow{u} (\overrightarrow{u} \cdot \overrightarrow{n})dA=\rho_0 (c \hat{e}(-c)S+c_1 \hat{i}c_1S_1+(-c_2 \hat{i})c_2S_2)$$
 

Attachments

  • ratio.png
    ratio.png
    24.9 KB · Views: 406
Physics news on Phys.org
You are learning how to apply macroscopic balances to solve certain types of fluid mechanics problems (that are amenable to this type of approach). Which part of the approach don't you understand: (a) continuity equation, (b) conservation of mechanical energy (Bernoulli) equation, or (c) macroscopic momentum balance equation? You seem to be indicating that you are not comfortable with the application of the macroscopic momentum balance equation, correct?

Chet
 
There seems to be a sign or labeling error. A small ϕ (and therefore large cos ϕ) should make S2 large and S1 small, not the opposite.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top