What is the Relationship Between Input Shaft Angle and Torque in U-Joints?

AI Thread Summary
The discussion centers on the relationship between input shaft angle and torque in U-joints, highlighting that increased angles significantly reduce the torque capacity of the joint. Specifically, a U-joint rated for 300 ft-lb at a 3-degree angle may only handle 100 ft-lb at a 10-degree angle, indicating a dramatic drop in performance as angles increase. Lower RPMs can mitigate wear but may lead to torque magnification when reducing speed from a high RPM motor. The effectiveness of this approach depends on the specific setup of the drive mechanism. A physical test with a torque wrench is proposed to gather empirical data on torque changes at various angles.
BretMan
Messages
3
Reaction score
0
Hello,

I need to select an appropriate electric motor for a drive mechanism which includes a U-Joint. It's understood that rotational variances occur in U Joints as the angle of the input shaft increases relative to the output shaft. Can someone refresh my memory as this relates to torque? In other words, is there a percentage increase in torque to drive the input shaft as its angle increases to say 15, 30, 45, 90 degrees relative to the output shaft that stays at 0 degrees? If so, what's the percentage increase at each increment - or at least a general rule of thumb?

Many thanks.

Bret
 
Engineering news on Phys.org
It's not so much the change in torque that is the problem with shafts coupled by U-joints. The life of the joint is greatly reduced once the angle increases beyond a very small amount, unless the torque applied to the joint is greatly reduced.

For instance, if a given shaft and joint is rated to transmit 300 ft-lb of torque at an angle of 3 degrees, the same shaft will only be capable of transmitting 100 ft-lb of
torque if the angle increases to 10 degrees.

For larger angles, U-jointed shafts are not practical.
 
Thanks SteamKing. Good thing that I asked. I seem to remember now about this limitation but didn't remember it to be as dramatic. I may need to reconsider the electric motor. However, don't you think that at least the wear issue could be reduced by going with lower RPMs , say under 100 RPM or even a manual crank?
 
It depends on what kind of motor you want to use. If you have a motor turning at high speed (say 1800 rpm) and you wish to reduce the output speed to 100 rpm, then the speed reduction will also result in a torque magnification. For instance:

1 ft-lb at 1800 rpm = 18 ft-lb at 100 rpm

It's hard to suggest anything without knowing more about how your drive mechanism is situated between the motor input and the output of the drive mechanism.
 
What I'll do then is jig a physical test with a torque wrench, create some resistance constant, and see what the readings are with each change of the angles. I'll post my findings.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top