Jhenrique
- 676
- 4
If:
\vec{v}=\frac{\mathrm{d} \vec{r}}{\mathrm{d} t}
so:
\\ \vec{v} = \frac{d\vec{r}}{dt} \\ \\ \vec{v}\;dt = d\vec{r} \\ \\ dt = \frac{d\vec{r}}{\vec{v}} \\ \\ \int dt = \int \frac{d\vec{r}}{\vec{v}} \\ \\ t = \int \frac{d\vec{r}}{\vec{v}}
Is true?
Solving the equation for time t, is need divide the position vector r by velocicty vector v... But I don't know do division between vectors...
\vec{v}=\frac{\mathrm{d} \vec{r}}{\mathrm{d} t}
so:
\\ \vec{v} = \frac{d\vec{r}}{dt} \\ \\ \vec{v}\;dt = d\vec{r} \\ \\ dt = \frac{d\vec{r}}{\vec{v}} \\ \\ \int dt = \int \frac{d\vec{r}}{\vec{v}} \\ \\ t = \int \frac{d\vec{r}}{\vec{v}}
Is true?
Solving the equation for time t, is need divide the position vector r by velocicty vector v... But I don't know do division between vectors...