What is the result of multiplying a vector by its complex conjugate?

  • Thread starter Thread starter hassouna
  • Start date Start date
  • Tags Tags
    Cauchy Momentum
hassouna
Messages
3
Reaction score
0
I found that the equation is expressed by
e3d8084bef8e3043efefed4ef511b1613eaa54a9


there is outer product ...what I really don't get it is if j is a vector then the outer product of j and j is is obtained by multiplying each element of j by the complex conjugate of each element of j which is basically a matrix not a vector
 
Last edited by a moderator:
Physics news on Phys.org
hassouna said:
I found that the equation is expressed by
e3d8084bef8e3043efefed4ef511b1613eaa54a9


there is outer product ...what I really don't get it is if j is a vector then the outer product of j and j is is obtained by multiplying each element of j by the complex conjugate of each element of j which is basically a matrix not a vector
But when you take the divergence of the outer product of j and j, this yields a vector.
 
divergence is a vector operator we can't operate it on matrix can't we??
 
hassouna said:
divergence is a vector operator we can't operate it on matrix can't we??
Yes. The divergence of a vector is a scalar. The divergence of a 2nd order tensor is a vector. You need to check the literature to see how to take the divergence of a tensor (basically a dyad). See Appendix A of Transport Phenomena by Bird, Stewart, and Lightfoot to see how to work with dyadics and other 2nd order tensors.
 
thank you for your help :smile:
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top