What is the rocket's initial acceleration?

Click For Summary

Homework Help Overview

The discussion revolves around determining the initial acceleration of a rocket in outer space after its engine is activated. The problem involves concepts from dynamics and the rocket equation, particularly focusing on mass ejection and its effects on acceleration.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the application of the rocket equation and conservation laws. Some question the interpretation of mass ejection and its implications on acceleration calculations. Others discuss the relevance of the mass flow rate and whether it can be considered constant over the first second.

Discussion Status

The discussion is active, with participants providing different perspectives on the problem. Some have offered insights into the interpretation of mass ejection and its impact on the calculations, while others are seeking clarification on specific aspects of the equations involved.

Contextual Notes

Participants note the importance of understanding the instantaneous rate of mass ejection and the assumptions made regarding the constancy of mass flow for simplification. There is also mention of the forum's rules regarding posting attempts and the need for clarity in problem statements.

JoeDGreat
Messages
5
Reaction score
2
New user has been reminded to always show their work when posting schoolwork questions
Homework Statement
A rocket is in outer space, far from any planet, when the rocket engine is turned on. In the first second of firing, the rocket ejects 1/120 of its mass with a relative speed of 2400m/s. What is the rocket's initial acceleration?
Relevant Equations
Vf-Vi = VeIn(Mi/Mf)
Help me solve... I'm getting errors here..
 
Physics news on Phys.org
The rocket equation you have quoted is not very useful to find acceleration. For that you need to look at the fundamental conservation law that is behind the rocket equation, and specifically how the conserved quantities of the rocket and ejected propellant change the instant the rocket is turned on.
 
JoeDGreat said:
Homework Statement: A rocket is in outer space, far from any planet, when the rocket engine is turned on. In the first second of firing, the rocket ejects 1/120 of its mass with a relative speed of 2400m/s. What is the rocket's initial acceleration?
Relevant Equations: Vf-Vi = VeIn(Mi/Mf)

Help me solve... I'm getting errors here..
Per forum rules, please post your attempt.
 
a = -Ve/Me × dM/dt
dM/dt = Mi/120 ÷ 1sec = -Mi/120sec
a =-2400/Mi ( -Mi/120) = 20m/s²

PS: This is the textbook solving but, I don't know how dM= Mi/120
 
JoeDGreat said:
a = -Ve/Me × dM/dt
dM/dt = Mi/120 ÷ 1sec = -Mi/120sec
a =-2400/Mi ( -Mi/120) = 20m/s²

PS: This is the textbook solving but, I don't know how dM= Mi/120
They are giving you the instantaneous rate of mass ejection at ##t=0##:

## \dot M(0) = -\frac{1}{120}M \frac{ \text{kg}}{ \text{s}} ##

Then apply "The Rocket Equation" at ##t = 0## (with no external forces).
 
Last edited:
JoeDGreat said:
In the first second of firing, the rocket ejects 1/120 of its mass with a relative speed of 2400m/s.
Is it this statement that is giving you interpretive issues? They should have just said something to the effect of " at the instant of firing", or we are just to assume the mass flow rate as constant over the first second for the sake of simplicity (i.e. being able to find a solution).
 
A loss of 1/120th of total mass is sufficiently small that we don't need to worry about how it changes over the second, or, indeed, that it changes at all. Just use momentum conservation: m/120 * 2400m/s = m*v.
Then a=v/t.
 
  • Like
Likes   Reactions: jbriggs444

Similar threads

Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
6K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 53 ·
2
Replies
53
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K