berra
- 20
- 0
Homework Statement
What is J in Ohms law in dynamics?
Homework Equations
Ampères law:
\nabla \times H = J_f + \partial_t D = J_f + \partial_t ( \epsilon_0 E + P)
\nabla \times H = \nabla \times (\mu_0^{-1} B - M) = \nabla \times (\mu_0^{-1} B) - \nabla \times (M) = \nabla \times (\mu_0^{-1} B) - J_m
\nabla \times (\mu_0^{-1} B) = J_m + J_f + \partial_t ( \epsilon_0 E + P)
Ohms law (statics?):
\sigma E = J
Relation between J and p (magnetostatics ?):
\int_V{ J dV} = \frac{dp}{dt} = \frac{d\int_{V'}{r' \rho{r'} dV'}}{dt}
The Attempt at a Solution
Is J = J_m + J_f + \partial_t (P) ?
Last edited: