Right. The notation means ##\mathbb{Z}_5^4 = \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5##. So the initial vectors, e.g. ##(2,0,3,2)## are meant to have their components, which are four of them, within ##\mathbb{Z}_5##, that is ##2 \in \mathbb{Z}_5\; , \;0 \in \mathbb{Z}_5\; , \; 3 \in \mathbb{Z}_5\; , \;2 \in \mathbb{Z}_5##. Together it is ##(2,0,3,2) \in \mathbb{Z}_5^4##. So the upper four is a count for the number of components, whereas the lower ##4## or ##5## in my example tells us where those components belong to. ##\mathbb{Z}_4 = \{0,1,2,3\}\; , \;\mathbb{Z}_5 = \{0,1,2,3,4\}## the possible remainders of a division by ##4##, resp. ##5##.