What is the solution for the function in the given equation?

  • Thread starter Thread starter tombk2
  • Start date Start date
tombk2
Messages
1
Reaction score
0

Homework Statement



f:\Re\rightarrow\Re
e^xf(x)+e^xf\prime(x)=f(x)
Find f(x)

Homework Equations





The Attempt at a Solution


i don't know if f(x)\neq 0 so i can't divide by f(x) which would make things pretty simple.
 
Physics news on Phys.org
Try this:

put all f '(x) on the left side, and f(x) on the right side
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top