What is the Solution to the Differentiation Problem (3x+2)^5.(x+1)^-2?

  • Thread starter Thread starter palui123
  • Start date Start date
  • Tags Tags
    Differentiation
palui123
Messages
15
Reaction score
0

Homework Statement



(3x+2)^5.(x+1)^-2

Homework Equations



dy/dx = dy/du . du/dx

The Attempt at a Solution



y=(3x+5)^5 . (x+1)^-2

u = 3x + 5 , du/dx = 3
v = u^5 , dv/du = 5u^4
= 15(3x+5)^4

u = x + 1 , du/dx = 1
v = u^-2 , dv/du = -2u^-3
-2(x+1)^-3


dy/dx = 15(3x+5)^4 . -2(x+1)^-3

Correct or not? or should I use the Product Rule. . .

=5(3x+5)^4 .
 
Physics news on Phys.org
Question: Differentiate the following Equation

ignore the " =5(3x+5)^4 " wrongly type. . .
 
It's a product, so you should use the product rule.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top