What is the solution to the partial differential equation with given conditions?

  • Thread starter Thread starter Dell
  • Start date Start date
  • Tags Tags
    Partial
Dell
Messages
555
Reaction score
0
X*U'x+Y*U'y=U
{U=1-x2}
{y=1}

-------------------------------------------

dx/x=dy/y=du/u

\intdx/x=\intdy/y

ln|x|=ln|y|+ln|c1|
x/y=c1

\intdx/x=\intdu/u

ln|x|=ln|u|+ln|c2|
x/u=c2

\Phi(x/u , x/y)=0

x/u=\phi(x/y)

now i use the conditions
{U=1-x2}
{y=1}


x/(1-x2)=\phi(x)=x/u

and all i get is U=1-x2 but i already know that

the correct answer is u=(y2 -x2)/y
 
Physics news on Phys.org
Dell said:
X*U'x+Y*U'y=U
{U=1-x2}
{y=1}

Is your equation

x \frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=1-x^2

or


x \frac{\partiall u}{\partial x}+y\frac{\partial u}{\partial y}=0

with u(x,0)=1-x2 and u(0,y)=1 ?
 
I interpret this to mean that U(x,y) satisfies
]x\frac{\partial U}{\partial x}+ \frac{\partial U}{\partial y}= U
with the condition that U(x, 1)= 1- x^2

But then it is peculiar that there is no condition for x a constant.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top