What is the syntax for the definte integral

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Integral
nameVoid
Messages
238
Reaction score
0
?........
 
Physics news on Phys.org
Do you mean the LaTeX syntax? If so, rather than explain the syntax, I'll just create the script that renders in a browser as a definite integral. Double-click it and you can see what I did.

\int_{0}^{\pi} \frac{sin^2(x)}{3} dx

If that's not what you're asking, you'll need to be more clear.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top