What is the trick to solving the integral of x/sqrt(x + 2)?

  • Thread starter Thread starter James Brady
  • Start date Start date
  • Tags Tags
    Integral
James Brady
Messages
106
Reaction score
4
\int\frac{x}{\sqrt{x + 2}}dx

We are still using substation as our method of solving integrals. I've rationalized the denominator, but that doesn't seem to help a whole lot. Any value for u I've picked so far hasn't worked. I've looked up the solution online, and I know it's not a trig integral. Any small hint would help.
 
Physics news on Phys.org
Once you recognise that
##\frac{1}{\sqrt{x + 2}} \propto \frac{d}{dx} \sqrt{x + 2}##
you could try integration by parts.
 
Or you could try ##x+2=u^2##.
 
Or u=x+2 :biggrin:

ehild
 
...or you use a little trick:

<br /> \int \mathrm{d} x \frac{x}{\sqrt{x+2}}=\int \mathrm{d} x \frac{x+2-2}{\sqrt{x+2}} = \int \mathrm{d} x \left [(x+2)^{1/2}-2 (x+2)^{-1/2} \right ]=\frac{2}{3} (x+2)^{3/2} - 4 (x+2)^{1/2}+\text{const}.
 
vanhees71 said:
...or you use a little trick:

<br /> \int \mathrm{d} x \frac{x}{\sqrt{x+2}}=\int \mathrm{d} x \frac{x+2-2}{\sqrt{x+2}} = \int \mathrm{d} x \left [(x+2)^{1/2}-2 (x+2)^{-1/2} \right ]=\frac{2}{3} (x+2)^{3/2} - 4 (x+2)^{1/2}+\text{const}.

Wow, sweet moves bro... I like that trick. Thanks a million.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top