What is the use of the convolution theorem in multiplying large numbers?

John Creighto
Messages
487
Reaction score
2
I had this dumb though the other day. I can't help wonder if there would ever be a reason to use the convolution theorem to multiply large numbers. It is used to multiply polynomials. But you would need an awful lot of digits to get any efficiency advantages from it and it would not take care of the carry part of the operation.
 
Physics news on Phys.org
HallsofIvy said:
You might also want to look at this Wikipedia article:
http://en.wikipedia.org/wiki/Fourier_analysis

Okay, interesting. It seems that they use something like it for a prime number search.

http://en.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search

However, there are perhaps superior methods since number theoretic transforms avoid rounding errors:
http://en.wikipedia.org/wiki/Multiplication_algorithm#Fourier_transform_methods
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top