What technique of integration to use here?

  • Thread starter Thread starter shawshank
  • Start date Start date
  • Tags Tags
    Integration
shawshank
Messages
62
Reaction score
0
hey, this isn't really a homework problem but I have this integral that I can't solve cause i haven't studied techniques of integration.

Any suggesstions

\int\frac{1}{\sqrt{12x+0.02x^2}}
 
Physics news on Phys.org
First you want to complete the square inside of the square root. You'll get something like a*(x+b)^2-c. Then do a trig substitution like c*sec(u)^2=a*(x+b)^2. Try it.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top