As I have read many times the virtual particle concept is just a product of the perturbation theory in quantum field theory. It’s another word for internal line or propagator, and so its ‘ontological status’ is questionable, that means without perturbation theory there were no virtual particles.
Also, it is always point out that real photons are internal lines in are larger system, too, so that the distinction between is not so clear.
OK. But isn’t there a need for them even without/ before QFT?
Here is my long-winded, probably nonsense idea of virtual particles:
Take a proton. The proton has a conservative force field, which means that it conserves the ability to do work. In order to do work, it does not need fuel like an engine, it does not have to decay like an atom and it does not have to be accelerated. In order to do work and to accelerate electrons again and again, it simply is a proton with its conservative force field.
When an atom decays a real photon is emitted and energy is transferred via a wave motion through a field. But this very field, when no waves are sent through it and it is static, does also transmit interaction, as above described. Now, the interaction of a static conservative field is mutual (electron and proton do work on each other), whereas the wave through the field sent off by the decaying atom has a direction.
But the mutuality of the conservative force is not immediate, no forces at distance at work.
Instead, static conservative force fields also send something that transports energy (which of course needs time to arrive, although being very fast since sent by light velocity). While being on its way, this something violates energy conservation, since the sender is now not in a lower energy state after sending away energy. Only after the mutual energy transfer has been completed and both senders have received their messages from one another energy conservation is re-established.
So that’s the need for virtual particles, for virtual energy messengers. By giving up forces at distance, and introducing messengers, we are confronted with a (momentary, also sometimes very long) violation of energy conservation. These messengers do not obey energy conservation, but fortunately energy-time uncertainty explains this violations and allows a non forces-at-distance description.