Theage
- 11
- 1
Homework Statement
I am currently working on a seemingly straightforward eigenvalue problem appearing as problem 1.8 in Sakurai's Modern QM. He asks us to find an eigenket \vert\vec S\cdot\hat n;+\rangle with \vec S\cdot\hat n\vert\vec S\cdot\hat n;+\rangle = \frac\hbar 2\vert\vec S\cdot\hat n;+\rangle where the unit vector n is defined by polar angle alpha and azimuthal angle beta.
Homework Equations
The definitions of the Pauli sigma matrices, along with the formula \hat n = (\sin\alpha\cos\beta,\sin\alpha\sin\beta,\cos\alpha) for conversion to Cartesian coordinates.
The Attempt at a Solution
\vec S\cdot\hat n = \frac\hbar 2\sin\alpha\cos\beta\begin{pmatrix}0&1\\1&0\end{pmatrix}+\sin\alpha\sin\beta\begin{pmatrix}0&-i\\i&0\end{pmatrix}+\cos\alpha\begin{pmatrix}1&0\\0&-1\end{pmatrix} = \frac\hbar 2\begin{pmatrix}\cos\alpha&\sin\alpha e^{-i\beta}\\\sin\alpha e^{i\beta}&-\cos\alpha\end{pmatrix}. Thus we have the \lambda=1 eigenvalue problem for the matrix \begin{pmatrix}\cos\alpha&e^{-i\beta}\sin\alpha\\e^{i\beta}\sin\alpha&-\cos\alpha\end{pmatrix}. This becomes the system of equations \begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x\cos\alpha+ye^{-i\beta}\sin\alpha-x\\-y\cos\alpha+xe^{i\beta}\sin\alpha-y\end{pmatrix}. Thus beta appears to be completely arbitrary, and alpha = n*pi, however this appears to have no solutions as we get cosines equaling 2 which is nonsense. The characteristic polynomial predicts a lambda=1 eigenvalue - where am I going wrong?