fereopk
- 16
- 0
\frac{\sqrt{1-a}}{\sqrt{1-b}}\approx \left ( 1-\frac{1}{2}a\right )\left ( 1+\frac{1}{2}b\right )
I know that the binomial approximation is first used,
\frac{\sqrt{1-a}}{\sqrt{1-b}}\approx \frac{1-\frac{1}{2}a}{1-\frac{1}{2}b}
But how does one approximate:
\frac{1-\frac{1}{2}a}{1-\frac{1}{2}b}\approx \left ( 1-\frac{1}{2}a\right )\left ( 1+\frac{1}{2}b\right )?
I know that the binomial approximation is first used,
\frac{\sqrt{1-a}}{\sqrt{1-b}}\approx \frac{1-\frac{1}{2}a}{1-\frac{1}{2}b}
But how does one approximate:
\frac{1-\frac{1}{2}a}{1-\frac{1}{2}b}\approx \left ( 1-\frac{1}{2}a\right )\left ( 1+\frac{1}{2}b\right )?