Where Inside an Insulating Sphere is the Electric Field Zero?

Clement
Messages
6
Reaction score
0

Homework Statement



An insulating sphere with radius 0.120 m has 0.750 nC of charge uniformly distributed throughout its volume. The center of the sphere is 0.240 m above a large uniform sheet that has charge density -9.40 nC/m2. Find all points inside the sphere where the electric field is zero.

Homework Equations



Intergral(E da) = Q_enclosed/epsilon_0

3. The Attempt at a Solution [/b
I drew the picture, but I don't know where to start.
 
Physics news on Phys.org
(1)If you had just the charged sphere and no charged sheet could you find the electric field?

(2)If you had just the charged sheet, and no sphere could you find the field?

(3)What does the superposition principle tell you about the combined field of the two objects?:wink:
 
(1)I think so, the electric field inside the sphere is (kQr)/R^3

(2)E= sigma/(2epsilon_0)

(3)sigma/(2epsilon_0)+(kQr)/R^3=0?

got it, thank you so much!
 
Careful, the fields are both vectors, so for (3) you need the vector sum of the two individual fields to be zero...you need to take the direction of each field into account.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top