Where Is the Lennard-Jones Potential Minimized?

terp.asessed
Messages
126
Reaction score
3

Homework Statement


At what distance r is the Lennard Jones potential minimized?

Homework Equations


Typical graph of Lennard Jones potential, U(r) vs. r/σ

The Attempt at a Solution


I thought that from looking at the graph, r = ∞ for potential minimization. However, the answer turned out to be (2)1/6σ. Could someone explain?
 
Physics news on Phys.org
terp.asessed said:
I thought that from looking at the graph, r = ∞ for potential minimization.
Why? Zero is not the minimum.

However, the answer turned out to be (2)1/6σ. Could someone explain?
You should have the function definition given somewhere. Finding the minimum is simple mathematics.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top