Where to Go Next for Uncertain Times

  • Thread starter Thread starter franky2727
  • Start date Start date
franky2727
Messages
131
Reaction score
0
question attached
 

Attachments

  • Picture.jpg
    Picture.jpg
    17.9 KB · Views: 353
Physics news on Phys.org
You write
\int \frac{1}{(v + 1)^2} dv = \int \frac{1}{x} dx
and then on the next line
-v - 1 = \ln |v| + c

I think you made a writing error there, which leads to an insolvable equation.
 
ah ok but if its lnx instead of v then I'm still on the right tracks?
 
ok so where do i go from e-v-1=KX ?
 
Yes, until that step you were fine.
Remember, you want the expression for v(x), and finally y(x) = x v(x).
So you have to solve v(x) from e^{-v(x)-1} = k x. Try taking logarithms on both sides.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top