Why Can Pl Be Taken Out of the Commutation in Quantum Mechanics?

Chronos000
Messages
80
Reaction score
0

Homework Statement



the problem asks for the commutation between momentum P and angular momentum L.

My solutions give an intermediate step of:

ejkl [Pi, Xk *Pl]

ejkl[Pi,Xk]Pl

I don't understand why we can just take out a Pl from the commutation. its not at the end of both parts of the commutation and so will be acted on in a different order
 
Physics news on Phys.org
There is a very useful identity,
[A, BC] = [A, B]C + B[A, C],
I suggest you remember it forever :-)

You can easily prove it by writing out the commutator, if you wish.
 
thanks for pointing this out to me. but wouldn't I have two terms if I used that relation?

I have also been told that Pi acting on Xk results in -i*h-bar deltaik

I thought the delta was only used to denote a dot product whereas a differential was just shown as a differential?
 
Doesn't the different components of momentum commute, i.e. [Pi,Pj]=0, i != j ?

In that case the result follows by using the mentioned identity (if I correctly understand that when you write Pi and Pj you mean the different components of momentum P).
 
I can't believe I missed that... I still don't know where this delta comes from though
 
i figured it out, thanks anyway
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top