Why can't Dn be isomorphic to the direct product of its subgroups?

mehtamonica
Messages
26
Reaction score
0
The dihedral group Dn of order 2n has a subgroup of rotations of order n and a subgroup of order 2. Explain why Dn cannot be isomorphic to the external direct product of two such groups.

Please suggest how to go about it.

If H denotes the subgroup of rotations and G denotes the subgroup of order 2.

G = { identity, any reflection} ( because order of any reflection is 2)

I can see that order of Dn= 2n = order of external direct product
 
Physics news on Phys.org
Try to show that Dn is nonabelian (for n\geq 3) and that your direct product will always be abelian...
 
micromass said:
Try to show that Dn is nonabelian (for n\geq 3) and that your direct product will always be abelian...

Thanks a lot. I got it.

If we take H as the subgroup consisting of all rotations of Dn, then being a cyclic group, it would also be abelian. Then again, subgroup K of order 2 is abelian.

Further, the external direct product H + K is abelian as H and K are abelian.

Thanks !
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
9
Views
12K
Replies
1
Views
2K
Replies
3
Views
3K
Replies
8
Views
2K
Replies
1
Views
2K
Replies
6
Views
3K
Back
Top