Why Do These Riemann Tensor Terms Cancel Each Other Out?

Click For Summary

Discussion Overview

The discussion revolves around the derivation of the Riemann tensor, specifically focusing on the cancellation of certain terms involving the Christoffel symbols and their derivatives. Participants explore the mathematical steps involved in the derivation, including the application of covariant derivatives and the product rule.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents two expressions involving Christoffel symbols and questions how they cancel each other out.
  • Another participant suggests that the cancellation might involve a forgotten product rule in the derivation.
  • Further elaboration includes the full derivation of the commutator of covariant derivatives, leading to the expression for the Riemann tensor.
  • References to external sources, such as a book by Dirac, are made for additional context on the derivation.
  • A participant expresses satisfaction upon resolving their confusion after revisiting the product rule and completing the derivation.

Areas of Agreement / Disagreement

The discussion appears to have moved from confusion to resolution for the initial poster, but it does not indicate a consensus on the broader implications or interpretations of the Riemann tensor's properties. Multiple viewpoints on the derivation process and the application of mathematical rules remain present.

Contextual Notes

Participants mention specific steps in the derivation that depend on the correct application of the product rule and the symmetry of Christoffel symbols. There is an acknowledgment of earlier misunderstandings that were clarified through further exploration.

Who May Find This Useful

This discussion may be useful for students and researchers interested in the mathematical foundations of general relativity and the properties of the Riemann tensor, particularly those grappling with the intricacies of covariant derivatives and tensor calculus.

ProfDawgstein
Messages
80
Reaction score
1
I was working on the derivation of the riemann tensor and got this

(1) ##\Gamma^{\lambda}_{\ \alpha\mu} \partial_\beta A_\lambda##

and this

(2) ##\Gamma^{\lambda}_{\ \beta\mu} \partial_\alpha A_\lambda##

How do I see that they cancel (1 - 2)?

##\Gamma^{\lambda}_{\ \alpha\mu} \partial_\beta A_\lambda - \Gamma^{\lambda}_{\ \beta\mu} \partial_\alpha A_\lambda = 0##

The only difference is ##\alpha \leftrightarrow \beta##

First step was ##\left[ D_\alpha, D_\beta \right] A_\mu = D_\alpha (D_\beta A_\mu) - D_\beta (D_\alpha A_\mu)##

then

##D_\beta A_\mu = \partial_\beta A_\mu - \Gamma^{\lambda}_{\mu\beta} A_\lambda = A_{\mu ;\beta} => V_{\mu\beta}##

then another covariant derivative

##D_\alpha V_{\mu\beta} = \partial_\alpha V_{\mu\beta} - \Gamma^{\lambda}_{\ \alpha\mu} V_{\lambda\beta} - \Gamma^{\lambda}_{\ \alpha\beta} V_{\mu\lambda}##

then plug in

## D_\alpha (D_\beta A_\mu) = \partial_\alpha (\partial_\beta A_\mu - \Gamma^{\sigma}_{\ \mu\beta} A_\sigma)
- \Gamma^{\lambda}_{\ \alpha \mu} (\partial_\beta A_\lambda - \Gamma^{\sigma}_{\ \lambda \beta} A_{\sigma})
- \Gamma^{\lambda}_{\ \alpha \beta} (\partial_\lambda A_\mu - \Gamma^{\sigma}_{\ \mu\lambda} A_\sigma)##

And later

##-\Gamma^{\lambda}_{\ \alpha \mu} (\partial_\beta A_\lambda - \Gamma^{\sigma}_{\ \lambda \beta} A_{\sigma})##

which is

##-\Gamma^{\lambda}_{\ \alpha \mu} \partial_\beta A_\lambda + \Gamma^{\lambda}_{\ \alpha \mu} \Gamma^{\sigma}_{\ \lambda \beta} A_{\sigma}##

the 2nd term cancels later, but the 1st one does not (see above)

Fleisch (Students Guide to Vectors and Tensors) also does this derivation, but he never had two terms like this.
 
Last edited:
Physics news on Phys.org
updated first post a few hours ago.

Why can't I edit it now?

----------------------------------------

the 2nd calculation (##D_\beta D_\alpha##) should be the same, except that ##\alpha \leftrightarrow \beta##

could it be that I forgot the product rule for the 2nd term in ##( ... )##?

I am so stupid :(

##\partial_\alpha (\partial_\beta A_\mu - \Gamma^{\sigma}_{\ \mu\beta} A_\sigma)##

##= \partial_\alpha \partial_\beta A_\mu - \partial_\alpha (\Gamma^{\sigma}_{\ \mu\beta} A_\sigma)##

using the product rule on the 2nd term

##= \partial_\alpha \Gamma^{\sigma}_{\ \mu\beta} A_\sigma - \Gamma^{\sigma}_{\ \mu\beta} \partial_\alpha A_\sigma##

doing ##\alpha \leftrightarrow \beta## for the 2nd commutator term

##= \partial_\beta \Gamma^{\sigma}_{\ \mu\alpha} A_\sigma - \Gamma^{\sigma}_{\ \mu\alpha} \partial_\beta A_\sigma##

which just produces the terms I need to cancel the ones from post #1 :)

-------------------------------------------------------

Thanks for not posting the answer.

Sometimes it is hard to see the obvious...

-------------------------------------------------------

The full derivation now is

##A_{\mu ;\beta \alpha} = \partial_\alpha \partial_\beta A_\mu - \partial_\alpha \Gamma^{\sigma}_{\ \mu\beta} A_\sigma - \Gamma^{\sigma}_{\ \mu\beta} \partial_\alpha A_\sigma - \Gamma^{\lambda}_{\ \alpha\mu} \partial_\beta A_\lambda + \Gamma^{\lambda}_{\alpha\mu} \Gamma^{\sigma}_{\ \lambda\beta} A_\sigma - \Gamma^{\lambda}_{\ \alpha\beta} \partial_\lambda A_\mu + \Gamma^{\lambda}_{\ \alpha\beta} \Gamma^{\sigma}_{\ \mu\lambda} A_\sigma##

and

##A_{\mu ;\alpha \beta} = \partial_\beta \partial_\alpha A_\mu - \partial_\beta \Gamma^{\sigma}_{\ \mu\alpha} A_\sigma - \Gamma^{\sigma}_{\ \mu\alpha} \partial_\beta A_\sigma - \Gamma^{\lambda}_{\ \beta\mu} \partial_\alpha A_\lambda + \Gamma^{\lambda}_{\beta\mu} \Gamma^{\sigma}_{\ \lambda\alpha} A_\sigma - \Gamma^{\lambda}_{\ \beta\alpha} \partial_\lambda A_\mu + \Gamma^{\lambda}_{\ \beta\alpha} \Gamma^{\sigma}_{\ \mu\lambda} A_\sigma##

subtracting both

##A_{\mu ;\beta \alpha} - A_{\mu ;\alpha \beta}##

using symmetry of the christoffel symbols and ##\partial_\alpha \partial_\beta = \partial_\beta \partial_\alpha## and moving the minus sign out of ##( ... )## we get

##\left[ D_\alpha, D_\beta \right] A_\mu = A_{\mu ;\beta \alpha} - A_{\mu ;\alpha \beta} = - R^{\sigma}_{\ \mu\alpha\beta} A_\sigma##

where

##R^{\sigma}_{\ \mu\alpha\beta} = \partial_\alpha \Gamma^{\sigma}_{\ \mu\beta} - \partial_\beta \Gamma^{\sigma}_{\ \mu\alpha} + \Gamma^{\lambda}_{\ \beta\mu} \Gamma^{\sigma}_{\ \lambda\alpha} - \Gamma^{\lambda}_{\ \alpha\mu} \Gamma^{\sigma}_{\ \lambda\beta}##
 
Last edited:
You may also see the derivation in Dirac's book : General theory of Relativity under equation 11.1 if I'm not wrong
 
Everything is solved now.

After some messy messing around and remembering the product rule ( LOL , Thanks Newton ;) ) I got it.

Can be closed.
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K