Time should not be in there. Including time would make this energy per unit of time, which is power, a different concept. Work is essentially defined as the product of a force times a distance. Specifically this product is actually a dot product, which means that the force has to act in a direction parallel to the direction of the displacement. For example, a planet in a perfectly circular orbit always experiences a force perpendicular to its direction of motion, so no work is performed on the planet by gravity and no energy is gained or lost from it at any time.
I am attempting to.
Now, consider what would happen if a photon was absorbed by an inner electron. The electron would jump up to a new energy level, using the energy provided by the photon. In other words, the photon performed work on the electron, which requires a transfer of energy from the photon to the electron. So, our electron has absorbed energy and moved away from the nucleus. This is the same thing that happens to rockets we shoot into interplanetary space. If we want to get it into an solar orbit outside of Earth's orbit, we have to perform work to move against the force of gravity. The rocket actually winds up with less speed and kinetic energy than it had before, but it ends up gaining potential energy, more than enough to offset the loss of kinetic.
A similar principle happens inside of atoms. The electrons further away from the nucleus have more potential energy than the ones closer in. If you were to consider them as being in classical orbits around the nucleus, then you could think of them as being accelerated as they fall towards the nucleus during a transition, converting potential energy into kinetic energy, and then releasing part of that kinetic energy in the form of radiation or heat and ending up in a stable orbit closer to the nucleus than before. But since we are dealing with quantum rules here we can't have a nice pretty picture like that. There is no gradual acceleration, only an instantaneous transition and release of energy. Still, the end result would is the same. The electron drops into a lower energy level and releases energy in the form of radiation or heat.