Why Does Current Flow When a Capacitor Is Connected by Wires?

AI Thread Summary
When a capacitor is charged, the electric fields around it can be canceled out due to superposition, but there can still be an electric field present in the connecting wires. This field arises from the voltage difference between the capacitor plates, allowing current to flow when the plates are connected by a wire. The structure of a capacitor, with layers of metal and dielectric, means that at least one plate will have an electric field around it when charged. Additionally, the leads of a capacitor can maintain a voltage, which is significant in applications like microwave ovens where high voltages can be dangerous. Understanding these concepts clarifies why current flows when a capacitor is connected by wires.
unseensoul
Messages
47
Reaction score
0
There are no electric fields outside of a charged capacitor as they are canceled out due to superposition, right?! So why is there a flow of current when a cable is connected to both ends of the capacitor?

I was told that there might be an E field in the wires. How come? Where does it come from?
 
Engineering news on Phys.org
A charged capacitor can be discharged by connecting the plates together.
That is what you do when you connect the two ends of a charged capacitor by a piece of wire.

A capacitor is made by making layers of metal and dielectric in a spiral on a central rod.
This means that one of the layers of metal must be on the outside of the capacitor. ie they can't both be on top.
So, this plate of the capacitor would certainly have a field around it if the capacitor was charged.
Maybe your first assertion isn't correct for normal capacitors?

Not sure what you mean by an "E" field. The leads of a capacitor can certainly have a voltage between them. There is a capacitor in all microwave ovens that is very capable of killing you.
 
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...

Similar threads

Back
Top