Why does \frac{b^3}{n^3} \frac{n(n+1)(2n+1)}{6} approach b^3/3 when n is large?

  • Thread starter Thread starter Artusartos
  • Start date Start date
  • Tags Tags
    Analysis
Artusartos
Messages
236
Reaction score
0
I don't really understand why \frac{b^3}{n^3} \frac{n(n+1)(2n+1)}{6} is close to b^3/3 if n is very large...can anybody explain this to me?

I attached the problem...

Thanks in advance
 

Attachments

  • 20121121_132828[1].jpg
    20121121_132828[1].jpg
    30 KB · Views: 390
  • 20121121_132856[1].jpg
    20121121_132856[1].jpg
    31.5 KB · Views: 375
Physics news on Phys.org
If n is big, then \frac{n(n+1)(2n+1)}{6} \simeq 2n^3/6 (in the sense that as n \to \infty we have \frac{n(n+1)(2n+1)}{6} \to \frac{2n^3}{6}).
 
Expand n(n + 1)(2n + 1), and then factor out n3. Finally, take the limit of your expression as n gets large.
 
Mark44 said:
Expand n(n + 1)(2n + 1), and then factor out n3. Finally, take the limit of your expression as n gets large.

In other words, write
\frac{n(n+1)(2n+1)}{n^3} = <br /> \frac{2 n^3}{n^3} \left(1 + \frac{1}{n}\right) \left( 1 + \frac{1}{2n} \right).

RGV
 
Ray Vickson said:
In other words, write
\frac{n(n+1)(2n+1)}{n^3} = <br /> \frac{2 n^3}{n^3} \left(1 + \frac{1}{n}\right) \left( 1 + \frac{1}{2n} \right).

RGV

Thanks :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top