Why Does n_0(x) Fail to Satisfy the Spherical Bessel Equation?

Logarythmic
Messages
277
Reaction score
0
What am I missing when I'm unsuccessful in showing by direct substitution into the spherical Bessel equation

r^2 \frac{d^2R}{dr^2} + 2r \frac{dR}{dr} + [k^2 r^2 - n(n + 1)] R = 0

that

n_0 (x) = - \frac{1}{x} \sum_{s \geq 0} \frac{(-1)^s}{(2s)!} x^{2s}

is a solution?

What's the catch??
 
Last edited:
Physics news on Phys.org
Ok, if there is no catch, can someone give me at starter here?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top