Laura08
- 3
- 0
Hello, sorry I am new to this forum, I hope I found the right category. I have a question about the momentum operator as in Sakurai's "modern quantum mechanics" on p. 196
If I let
1-\frac{i}{\hbar} d\phi L_{z} = 1-\frac{i}{\hbar} d\phi (xp_{y}-yp_{x})
act on an eigenket | x,y,z \rangle
why do I get | x-yd\phi,y+xd\phi,z \rangle
and not | x+yd\phi,y-xd\phi,z \rangle ,
with the momentum operators
p_{x}=\frac{\hbar}{i}\frac{\partial}{\partial x} , p_{y}=\frac{\hbar}{i}\frac{\partial}{\partial y}
Thanks for your help!
If I let
1-\frac{i}{\hbar} d\phi L_{z} = 1-\frac{i}{\hbar} d\phi (xp_{y}-yp_{x})
act on an eigenket | x,y,z \rangle
why do I get | x-yd\phi,y+xd\phi,z \rangle
and not | x+yd\phi,y-xd\phi,z \rangle ,
with the momentum operators
p_{x}=\frac{\hbar}{i}\frac{\partial}{\partial x} , p_{y}=\frac{\hbar}{i}\frac{\partial}{\partial y}
Thanks for your help!