stunner5000pt
- 1,443
- 4
Explain why elight emitted at a point inside the Scwarzschild radius (r<a) cannot be seen by a distant observer. (by one at r-> infinity)
well we know the trajectory of a photon is given by
\dot{r}^2 = c^2 \lambda^2 - \left( 1 - \frac{a}{r}\right) \frac{J^2}{r^2}
where J repsents the angular momentum in units of mass
lambda is \lambda = \dot{t} \left( 1 - \frac{a}{r} \right)
so when r < a does the expression for r dot become imaginary? Is that what i am aiming to prove?
well we know the trajectory of a photon is given by
\dot{r}^2 = c^2 \lambda^2 - \left( 1 - \frac{a}{r}\right) \frac{J^2}{r^2}
where J repsents the angular momentum in units of mass
lambda is \lambda = \dot{t} \left( 1 - \frac{a}{r} \right)
so when r < a does the expression for r dot become imaginary? Is that what i am aiming to prove?