Why is atmospheric pressure the same indoors?

AI Thread Summary
Atmospheric pressure remains consistent indoors because it is a state function dependent on elevation, not just the air column directly above. Even with a ceiling, air pressure is exerted in all directions, including from the sides, which maintains the same pressure throughout the space. The concept of a density gradient explains that air is denser at ground level, contributing to the pressure felt indoors. If a house were airtight and air was removed, pressure would drop, illustrating that air can seep in through cracks, maintaining equilibrium. Thus, atmospheric pressure indoors is effectively the same as outdoors due to these principles.
mcmath
Messages
5
Reaction score
0
Hi, apologies in advance as I feel stupid for asking this, but believe me I tried googling. The typical explanation for atmospheric pressure is that there is a column of air sitting on us, creating a pressure of 101 kPa. But what if there's a ceiling above us? Now only a few feet of molecules is directly above our heads. Why doesn't atmospheric pressure change? I remember vaguely from a physics course that it's related to pressure being a state function only dependent on elevation, and that pressure is applied in all directions at the given elevation. So I can understand that my arms may feel the 101 kpa pressure, but if I'm indoors, why does the top of my head still feel the same 101 kpa pressure?
 
Physics news on Phys.org
Welcome to PF!
mcmath said:
The typical explanation for atmospheric pressure is that there is a column of air sitting on us, creating a pressure of 101 kPa. But what if there's a ceiling above us? Now only a few feet of molecules is directly above our heads. Why doesn't atmospheric pressure change?
Imagine you pumped all the air out of your house. Is your house air tight? What keeps the air from pouring off the roof of your house and in through the cracks between your front door and its frame?
 
ok, so I guess a better explanation of atmospheric pressure is that there is a density gradient of air, with the density being heaviest at ground level?
 
I guess my main point of confusion is when people explain atmospheric pressure to me as a column of air above our heads, extending miles into the air, which would mean the 101kPa pressure is from the billions of air molecules pressing down on my head, which makes sense only if you're outdoors
 
mcmath said:
I guess my main point of confusion is when people explain atmospheric pressure to me as a column of air above our heads, extending miles into the air, which would mean the 101kPa pressure is from the billions of air molecules pressing down on my head, which makes sense only if you're outdoors

Well, this column likes to seep through any tiny crack and push in from all sides.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top