Why is centripetal force greater than static force in a spring mass experiment?

AI Thread Summary
In a lab experiment on centripetal acceleration using a spring mass mechanism, it was observed that the centripetal force required to maintain motion is greater than the static force needed to stretch the spring to the same distance. The discussion highlighted the importance of understanding the forces involved, suggesting that drawing force diagrams for both the dynamic and static cases clarifies the differences. It was concluded that the greater centripetal force is due to the perpendicular relationship between velocity and acceleration during motion, compared to their alignment in static conditions. The participants emphasized that visualizing problems through diagrams is a valuable strategy in mechanics. Overall, the exercise reinforced the concept of force dynamics in circular motion.
Havoc2020
Messages
5
Reaction score
0
We recently did an experiment in lab on centripetal acceleration. We used a spring mass mechanism and used the data we collected to compute the centripetal force. We then had to hang the spring mechanism on a stand then add weight to stretch the spring to the same index point and calculate the static force required.

So my question is why is the centripetal force required higher than the static force to stretch the spring the same distance?

Any help will be appreciated as this was not discussed in lab and we have just started the chapter on circular motion.

Thanks
 
Physics news on Phys.org
think of the forces involved. try drawing a force diagram for both cases, i.e. for in motion and the static case. can you see why the in motion case would require a stronger magnitude force?
 
OK I drew the force diagrams and my assumption is that the force is greater for centripetal because the velocity is perpendicular to the acceleration whereas in the static force the velocity and acceleration are in the same direction.
 
awesome, that's right.
 
Thanks for the help. Drawing the force diagrams made it pretty clear.
 
for mechanics problems, it's the best advice i can give. usually with a good picture, any problem may be solved. awesome work.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top