Why is \delta'(y) = -\delta'(-y)?

signalcarries
Messages
4
Reaction score
0

Homework Statement



I'm trying to prove that \delta'(y)=-\delta'(-y).

Homework Equations





The Attempt at a Solution



I'm having trouble getting the LHS and the RHS to agree. I've used a test function f(y) and I am integrating by parts.

For the LHS, I have
\int_{-\infty}^{\infty} f(y)\delta'(y)dy = \int_{-\infty}^{\infty} \frac{d}{dy}[f(y)\delta(y)]dy - \int_{-\infty}^{\infty} \delta(y)\frac{df(y)}{dy}dy = 0 - f'(0) = -f'(0)

For the RHS, I have
-\int_{-\infty}^{\infty} f(y)\delta'(-y)dy = \int_{\infty}^{-\infty} f(-t)\delta'(t)dt = -\int_{-\infty}^{\infty} f(-t)\delta'(t)dt = -\int_{-\infty}^{\infty} \frac{d}{dt} [f(-t)\delta(t)]dt + \int_{-\infty}^{\infty} \frac{df(-t)}{dt} \delta(t)dt = 0 + \int_{-\infty}^{\infty} \frac{df(-t)}{dt} \delta(t)dt = f'(0).

I seem to be off by a minus sign, but I can't figure out where. Any help would be appreciated.
 
Physics news on Phys.org
df(-t)/dt=-df(t)/dt at t=0.
 
Yes, I suppose it does. Thanks!
 
Dick said:
df(-t)/dt=-df(t)/dt at t=0.

A proof of the above statement would be more helpful.
 
the_amateur said:
A proof of the above statement would be more helpful.

Chain rule.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top