Why is my Angular Momentum Homework Solution Incorrect?

Nuwbs
Messages
2
Reaction score
0

Homework Statement


So I'm told I can't do it this way but I was wondering if anyone could clarify as to why? We're given |J=\frac{1}{2},M = \frac{1}{2}\!> where j_1 = 1 \, and \, j_2 = \frac{1}{2}

Homework Equations


The Attempt at a Solution


So this can be composed as a linear combination:
| \frac{1}{2} \frac{1}{2}\!> = C_1 |1 1\!>|\frac{1}{2} -\frac{1}{2}\!> + C_2 |10\!> \frac{1}{2}\frac{1}{2}\!>
Applying the raising operator to both sides J_+ gives:
0 = C_1 |1 1\!>|\frac{1}{2} \frac{1}{2}\!> + \sqrt{2}C_2 |11\!> \frac{1}{2}\frac{1}{2}\!> so that C_1 = -\sqrt{2}C_2 \, and \, C^2_1 + C^2_2 = 1 \, implies \, C_2 = \frac{1}{\sqrt3} \, and \, C_1 = \frac{\sqrt2}{\sqrt3}
But, I'm told this is wrong, why and thank you.
 
Physics news on Phys.org
Other than a sign mistake — one of the constants should be negative — it looks fine to me.
 
I was told that this is true but that you cannot construct J=1/2 states directly, moreover that the coefficients are relative?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top