B Why is static friction necessary for pure rolling?

AI Thread Summary
Static friction is essential for pure rolling because it allows the object to maintain a condition of no relative motion between the contact points and the surface. Initially, when a cylinder is launched with translational velocity but no angular velocity, kinetic friction acts to adjust the angular velocity until the condition for pure rolling (V=RW) is met. Once this condition is satisfied, static friction takes over, preventing further changes in translational and angular velocities. While kinetic friction is necessary to transition to pure rolling, static friction is crucial for sustaining that state. If the frictional force exceeds the static friction limit, slipping will occur, disrupting pure rolling.
tbn032
Messages
34
Reaction score
7
Suppose a cylinder is launched on a horizontal frictional surface such that it has initial translational velocity v and zero angular velocity .the kinetic friction would be applied between the contact points of the cylinder and the surface, opposite to the direction of the translational motion. This kinetic frictional force will simultaneously apply torque on the cylinder (which will increase its angular velocity) and decrease the translational velocity till the cylinder satisfy the condition for pure rolling(V=RW).when the condition for pure rolling is satisfied, the relative velocity between the contact points and surface would be zero and this there would be static friction between the contact points and the surface.

My confusion is that why is static friction necessary for pure rolling instead of kinetic friction. Static friction is applied when the object satisfies the condition for pure rolling(V=RW). The static friction does not increase or decrease, both translational and angular velocity. Kinetic friction on the other hand ensures that the object follows the condition for pure rolling on a horizontal frictional surface.

According to my understanding, if an object is launched on a frictionless surface such that it initially satisfies the condition for pure rolling, then the object would continue to be in pure rolling motion even in the absence of static friction(static friction=0 because µ=0), thus the static friction is not necessary for pure rolling. But if an object is launched on a frictionless surface such that it initially does not satisfy the condition for pure rolling, then the motion of the object would not be transformed into pure rolling due to absence of kinetic friction. Can you explain that why is the static friction is called to be necessary for pure rolling of an object instead of kinetic friction?
 
Physics news on Phys.org
tbn032 said:
Suppose a cylinder is launched on a horizontal frictional surface such that it has initial translational velocity v and zero angular velocity .the kinetic friction would be applied between the contact points of the cylinder and the surface, opposite to the direction of the translational motion. This kinetic frictional force will simultaneously apply torque on the cylinder (which will increase its angular velocity) and decrease the translational velocity till the cylinder satisfy the condition for pure rolling(V=RW).
Yes.
tbn032 said:
when the condition for pure rolling is satisfied, the relative velocity between the contact points and surface would be zero and this there would be static friction between the contact points and the surface.
There is no need for friction when pure rolling is achieved.
 
  • Like
Likes Kashmir and topsquark
tbn032 said:
Can you explain that why is the static friction is called to be necessary for pure rolling of an object instead of kinetic friction?
If the object is starting from zero velocity respect to the surface, static friction should accelerate it quicker than kinetic friction.
Think of a car doing a burn out: acceleration is greater without smoke.
 
Lnewqban said:
If the object is starting from zero velocity respect to the surface, static friction should accelerate it quicker than kinetic friction.
Think of a car doing a burn out: acceleration is greater without smoke.
I don't see how this is relevant.
 
tbn032 said:
Can you explain that why is the static friction is called to be necessary for pure rolling of an object instead of kinetic friction?
It is not "necessary". But once rolling without slipping has been achieved, the surfaces will (ideally) have zero relative motion within the contact patch. Static friction is then a more apt description of the interaction between the two surfaces. If the frictional force across the interface subsequently exceeds the maximum imposed by the coefficient of static friction then the two surfaces will "break loose" and slipping will resume.
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
I know that mass does not affect the acceleration in a simple pendulum undergoing SHM, but how does the mass on the spring that makes up the elastic pendulum affect its acceleration? Certainly, there must be a change due to the displacement from equilibrium caused by each differing mass? I am talking about finding the acceleration at a specific time on each trial with different masses and comparing them. How would they compare and why?
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/

Similar threads

Back
Top